Dispersive calculation of the massless multi-loop sunrise diagram
نویسنده
چکیده
The massless sunrise diagram with an arbitrary number of loops is calculated in a simple but formal manner. The result is then verified by rigorous mathematical treatment. Pitfalls in the calculation with distributions are highlighted and explained. The result displays the high energy behaviour of the massive sunrise diagrams, whose calculation is involved already for the two-loop case.
منابع مشابه
ar X iv : h ep - t h / 06 04 11 3 v 1 1 6 A pr 2 00 6 Dispersive calculation of the massless multi - loop sunrise diagram
The massless sunrise diagram with an arbitrary number of loops is calculated in a simple but formal manner. The result is then verified by rigorous mathematical treatment. Pitfalls in the calculation with distributions are highlighted and explained. The result displays the high energy behaviour of the massive sunrise diagrams, whose calculation is involved already for the two-loop case.
متن کاملar X iv : h ep - t h / 06 04 11 3 v 2 2 M ay 2 00 6 Dispersive calculation of the massless multi - loop sunrise diagram
The massless sunrise diagram with an arbitrary number of loops is calculated in a simple but formal manner. The result is then verified by rigorous mathematical treatment. Pitfalls in the calculation with distributions are highlighted and explained. The result displays the high energy behaviour of the massive sunrise diagrams, whose calculation is involved already for the two-loop case.
متن کاملOperator approach to analytical evaluation of Feynman diagrams
The operator approach to analytical evaluation of multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of massless Feynman integrals, such as the integration by parts method and the method of ”uniqueness” (which is based on the star-triangle relation), can be drastically simplified by using this operator approach. To demonstrate the advantages of the ...
متن کاملMulti-loop Feynman Integrals and Conformal Quantum Mechanics
New algebraic approach to analytical calculations of D-dimensional integrals for multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of multi-loop Feynman integrals, such as integration by parts and star-triangle relation methods, can be drastically simplified by using this algebraic approach. To demonstrate the advantages of the algebraic method of ...
متن کاملLaurent Series Expansion of Sunrise-type Diagrams Using Configuration Space Techniques *
We show that configuration space techniques can be used to efficiently calculate the complete Laurent series ε-expansion of sunrise-type diagrams to any loop order in D-dimensional space-time for any external momentum and for arbitrary mass configurations. For negative powers of ε the results are obtained in analytical form. For positive powers of ε including the finite ε 0 contribution the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006